Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation.
نویسندگان
چکیده
Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 A from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal beta-hairpin at the distal site-a surface-exposed hydrophobic crevice 17 A away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 A of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.
منابع مشابه
Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer's progression in vivo
Deposition of amyloid β protein (Aβ) to form neuritic plaques in the brain is the pathological hallmark of Alzheimer's disease (AD). Aβ is produced by β- and γ-cleavages of amyloid β precursor protein (APP). Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a de-ubiquitinating enzyme that cleaves ubiquitin at its carboxyl terminal. Dysfunction of UCHL1 has been reported in neurodegenerative d...
متن کاملUbiquitin C-terminal hydrolase L1 interacts with choline transporter in cholinergic cells
Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme, which is highly expressed in neuronal cells. Previous studies have indicated that UCHL1 is involved in cognitive function, neurodegenerative diseases, and neuromuscular junction development. Acetylcholine (Ach) is a critical neurotransmitter in these functions. Yet, the effect of UCHL1 on the cholinergic system has n...
متن کاملStructural basis for the specificity of ubiquitin C-terminal hydrolases.
The release of ubiquitin from attachment to other proteins and adducts is critical for ubiquitin biosynthesis, proteasomal degradation and other cellular processes. De-ubiquitination is accomplished in part by members of the UCH (ubiquitin C-terminal hydrolase) family of enzymes. We have determined the 2.25 A resolution crystal structure of the yeast UCH, Yuh1, in a complex with the inhibitor u...
متن کاملModification of ubiquitin C-terminal hydrolase L1 by reactive lipid species: role in neural regeneration and diseases of aging
Role of ubiquitin C-terminal hydrolase L1 (UCHL1) in brain function: Ubiquitin is used by a variety of cellular systems to tag proteins for transport to various organelles. There are a number of enzymes in the ubiquitin-proteasome pathway (UPP) that tag abnormally folded proteins with ubiquitin for transport to the proteasome for degradation. UCHL1 is a neuron-specific enzyme constituting over ...
متن کاملUbiquitin recognition of BAP1: understanding its enzymatic function
BRCA1-associated protein 1 (BAP1) is a nuclear localizing UCH, having tumor suppressor activity and is widely involved in many crucial cellular processes. BAP1 has garnered attention for its links with cancer, however, the molecular mechanism in the regulation of cancer by BAP1 has not been established. Amongst the four UCHs, only BAP1 and UCHL5 are able to hydrolyze small and large ubiquitin a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 20 شماره
صفحات -
تاریخ انتشار 2010